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(57) ABSTRACT

The present invention relates to a method of identifying pep-
tides and proteins from mass spectrometry data using mul-
tiple search engines, wherein: a) the scores calculated on each
engine are modeled; b) the presence of matching parameters
is included, c) the distribution of meta-scores using distribu-
tion functions is modeled, d) scores of peptide and precursor
protein are built. Among the main advantages of the invention
it is worth mentioning its flexibility to be applied to an arbi-
trary number of engines, the use of matching parameters that
add additional information not available with a single engine,
the increase in the number of peptides-proteins identified or
its versatility to incorporate other additional sources of infor-
mation, depending on the type of experiment being examined.
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1
METHOD FOR IDENTIFYING PEPTIDES
AND PROTEINS FROM MASS
SPECTROMETRY DATA

FIELD OF THE INVENTION

The present invention falls within the field of methods for
identification and structural characterization of proteins on a
large scale through mass spectrometry techniques.

BACKGROUND OF THE INVENTION

Proteomics is one of the sciences of the post genomic era
that has a greater impact on modern biotechnology, since it
comprises the identification and quantification of large
amounts of protein in extremely complex matrices (biologi-
cal fluids, tissues or cell cultures, among others). Currently,
the most successful and academically and industrially rel-
evant techniques used in proteomics are those based on tan-
dem mass spectrometry (MS/MS), which consists of the
extraction of proteins from the sample to be tested, the diges-
tion of these proteins with enzymes or other chemicals to
obtain peptides (easier to analyze), the separation of these
peptides, usually done by chromatographic techniques and
placing them in a mass spectrometer in ionized form to mea-
sure their mass and fragmenting them within the mass spec-
trometer in order to obtain structural information so as to
permit the identification of proteins formed by the analyzed
peptides.

Current research in Proteomics based on tandem mass
spectrometry involves the generation of large volumes of data
typically containing thousands to millions of mass spectra.
These spectra are allocated to sequences of peptides recorded
in databases, using software called search engines. In the
historical development of proteomics based on MS/MS,
given the high number of spectra involved in the analysis,
manual validation of spectrum-peptide correspondence has
become impracticable in a short time, so it has become nec-
essary to develop automatic procedures, not handled by the
user, to identify the analyzed peptides, and discard spurious
matches (known as false positives or false detections). These
procedures include the use of algorithms based on statistical
scoring systems to classify each spectrum analyzed in a
sample, so that the higher the score, the greater the probability
that the spectrum-peptide assignment is correct.

Currently, the existing differences among the various
search engines on the market are derived from the pre-pro-
cessing and standardization of MS/MS spectrum analyzed, as
a result of the use of various statistical models and numerical
methods in the scoring system for each engine. These differ-
ences pose a major problem when analyzing MS/MS spec-
trum using multiple search engines, as some sequences of
peptides identified correctly in one of the engines may not be
in others. This is a widely known fact by experienced spec-
trometers. The present invention comprises a method of com-
bined search using multiple engines (hereinafter defined as
meta-search) aimed at solving this problem, as well as opti-
mization techniques for analyzing the spectra obtained by
MS/MS. This method also provides a general criterion score
(which we define as a goal-scoring) of the results obtained by
different database engines using a sufficiently robust statisti-
cal modeling leading to a unique peptide spectrum allocation.

Despite the potential benefits that a meta-search method
with multiple engines has, few attempts have been made in
this direction so far. Among the most relevant ones, it is worth
mentioning the work developed by Rohrbough et al. [1],
Higgs et al. [2], Searle et al. [3] and Alves et al. [4]. On the
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other hand, within the state of the art related to research in
proteomics, it is more abundant the existence of commercial
products with comparative search options (which differs from
the concept of meta-search) using several engines that present
some software applications found in the market, such as the
option “InChorus” by PEAKS search engine (distributed by
Bioinformatics Solutions Inc.), the Rosetta Flucidator data
analysis system (distributed by Rosetta Biosoftware), the
Proteome Discoverer platform analysis (distributed by
Thermo Fisher Scientific Inc.) or the Phenyx engine, distrib-
uted by Geneva Bioinformatics SA.

Another application of this technical field is the embodi-
ment of the search methods in analytical devices of peptides
and proteins that combine both hardware and software, and
are marketed independently as “plug-and-play” workstations
or servers that can be used simultaneously by multiple users.
An example of such devices would be the Sorcerer 2 work-
station, sold by Sage-N Research, Inc., or the configurable
server distributed jointly by IBM and Thermo Electron Cor-
poration. These devices do not integrate, to date, the simul-
taneous use of several engines through a meta-search method.

While the present invention shares some approaches and
objectives with each of the aforementioned techniques, it is
the only one of all methods that presents the following set of
advantages:

The method for meta-search and meta-scoring system adds
additional information that can not be obtained by searching
with only one engine.

It uses a robust statistical modeling that allows the selec-
tion of a unique combination of peptide sequence, electric
charge and chemical composition by spectrum (as opposed to
the methods used by PEAKS, Rosetta Elucidator, Proteome
Discoverer and Phenyx, which only use the results of multiple
engines for comparative purposes, without the possibility of
using a common statistical and a common meta-scoring sys-
tem).

This method can be completely generalized for the use of
any number of search engines (as opposed to the methods
proposed in References [1] and [2], whose generalization to
more than two engines is not feasible).

It uses a standard method that applies to the results of any
search engine to obtain the statistical distribution functions,
unlike the method described in Reference [3] and its commer-
cial embodiment in the Scaffold application (distributed by
Proteome Software Inc.) whose extension to more than the
three studied engines would require a satisfactory distribution
for each new search engine used.

Itintegrates, in its formulation, the use of matching param-
eters, defined as the number of other search engines that have
supplied the same peptide candidate than a given engine. The
use of matching parameters is not covered in the method
contemplated in Reference [4], missing because of its
absence a valuable part of the information, which contributes
significantly to the increase in the number of identified pep-
tides.

It automatically optimizes the values of all parameters
involved in the process through statistical modeling, without
the need to define any type of filter, arbitrary scoring mecha-
nism or presetting values for the coefficients of the latter,
unlike methods based on arbitrary multiple filters or pre-
defined scoring mechanisms described in references [4] and
[5]-

As for protein detection, it uses a rigorous statistical
method, unbiased, which uses a filtering defined by the error
rates in the peptide-sequence allocations.

Additionally, the claimed method is flexible enough to
incorporate other sources of additional information to the
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consistency of the engine, such as the filtering through the
mass error of the sequence precursor ion (defined as the
difference between the theoretical mass of an ion peptide and
the measuring of the mass obtained by the spectrometer, using
either its molecular mass or its mass/charge ratio, m/Z), the
error in the retention time (defined as the characteristic retain-
ing time during chromatographic separation), the prediction
error of the isoelectric point (similar to the previous factor,
when the peptides are fractioned using isoelectric focusing
separation techniques), ionic mobility (in the mass spectrom-
eter incorporating such an analysis, based on ion accumula-
tion of chemical species under the action of an electric field),
the specificity of the enzymatic digestion used (ie, the char-
acteristics of protein segmentation depending on the type of
enzymes used for digestion), the detection of multiple isoto-
pic patterns for a same peptide (common in stable isotopic
labelling experiments used in quantitative proteomics appli-
cations) or consistent with the sequence obtained by MS/MS
without using a search engine (known as de novo sequencing
of the information.) This flexibility makes it possible for the
meta-search method to integrate data using different sample
preparations, different methods of protein digestion and dif-
ferent mechanisms of ion fragmentation, which makes it a
suitable tool for large-scale identification of proteins.

The present invention is based on a meta-search method
using the results of spectrum-peptide allocation obtained in
different search engines on hybrid target/decoy databases
containing a 1:1 ratio of real proteins against false proteins.
These false proteins are usually obtained reversing the
sequence of each of the real proteins. As a preliminary step to
the allocation of meta-results, the method of analysis of
results in each of the engines studied separately is performed
using the technique developed by Ramos-Fernandez et al [6]
(developed for using a single search engine) based on the use
of generalized Lambda distributions (GLD’s). Said GLD’s
are functions of four extremely flexible parameters that can
represent with great precision the majority of the most impor-
tant families of continuous probability distributions used in
statistical modeling of histograms. The GLD’s model (de-
scribed in, for example, the work of Karian et al [6]) has not
been previously used to perform combined searches on mul-
tiple engines of sequence databases, and provides the theo-
retical framework of the statistical model on which the meta-
search method and meta-scoring here claimed operates.
Unlike the model of reference [7], the invention claimed here
is presented as a method that can be implemented automati-
cally, providing objective criteria that will allow the election
of'the GLD that best fits the observed results without the need
of personally supervising each of the candidate models.
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SUMMARY OF THE INVENTION

An object of this invention is to provide a general method
for identifying peptides and proteins using data from tandem
mass spectrometry.

Another object of this invention is to provide a meta-search
engine in which the candidate peptides are obtained from
multiple search engines in sequence databases.

These and other objects are achieved by a method in which:

A search using at least two search engines in sequence
databases (meta-search) is used and can be extended to the
analysis of any number of engines. This generates additional
information that cannot be gained through the search with a
single engine.

Candidate peptides are classified in each search engine to
build a model of generalized Lambda distribution (GLD’s). A
theoretical support completely general, applicable to an arbi-
trary number of search engines is achieved in this way.

Data from multiple search engines is integrated through a
meta-scoring system based on generalized probability distri-
butions and generalized p-values (the latter defined as the
values of probability that specific peptide sequence detection
has been produced randomly). A robust statistical modeling
that allows the selection of a unique combination of peptide
sequence, electric charge and chemical composition by spec-
trum is achieved this way.

The meta-scoring system includes the presence of match-
ing parameters that provide information about the coinci-
dence of peptide-sequence allocation in multiple engines.
Greater analysis information is achieved, which contributes
significantly to the increase in the number of peptides iden-
tified.

In a preferred embodiment of the present invention, the
integration of data from multiple search engines is carried out
through a system of meta-scoring based on generalized
Lambda distributions (GLD’s) and generalized p-values. A
unique distribution of meta-scores is achieved as well as a
classification system of peptide sequence allocation that inte-
grates data from all search engines used, providing additional
information that is not available through the use of a single
engine.

In a preferred embodiment of the present invention a gen-
eralized error rate is estimated, either through false discovery
rate (usually appointed by the English term, “false discovery
rate”, or FDR, and defined in the detailed description of
invention) through the decoy hit rate (designated by the
English term “decoy hit rate” or DHR, and defined in the
detailed description of the invention), through the probability
of obtaining at least one false positive (called “Familywise
error rate”, FWER, and defined in the detailed description of
the invention) or through any other statistical measure of error
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in identification. This way, an estimate of accuracy in the
peptide sequence allocations for a given data set is facilitated.

In a preferred embodiment of the present invention, p-val-
ues corresponding to the allocation of precursor proteins in
data sets are calculated, as well as error rates FDR and DHR
of'said proteins. This way, a single set of data about the added
information from all search engines on the precursor protein
of the detected peptides is achieved.

In a preferred embodiment of the present invention, a dif-
ferent weight coefficient is assigned to each engine during the
meta-scoring phase, being this set a priori or calculated
depending on factors such as, the tendency to match of some
of the selected engines (using, for example, similar algo-
rithms that produce an overlap), that any of the engines had a
much higher yield than the rest, or any other situation in
which you want to perform an asymmetric weighting among
the various sources employed. This incorporates the possibil-
ity of promoting the value of information obtained by some
engine on others.

In a preferred embodiment of the present invention, a rela-
tionship is established between the meta-score calculated for
a spectrum-peptide allocation and the characteristics of the
sequence of the peptide candidate, such as length, presence or
absence of sub-sequences or structural motifs as well as the
matching of the sequence of the peptide with what is expected
from the cutting mechanism of the chemical agent used in the
digestion of proteins. This allows to incorporate the factors
expected in the obtained sequences to the meta-scoring
method, depending on the features of the experiment ana-
lyzed, in order to improve the discrimination between correct
and incorrect allocations.

In a preferred embodiment of the present invention, the
meta-search method is integrated on a device designed to
analyze results of tandem mass spectrometry, comprising
electromagnetic, electronic or computer made in the form of
hardware and/or software mechanical means, being aimed to
form a data analysis system for the identification of peptides
and proteins.

Other features and advantages of the present invention will
be understood from the following detailed description and an
illustrative embodiment of its object in relation to the accom-
panying figure.

DESCRIPTION OF THE FIGURES

FIG. 1 is a schematic diagram of the meta-search method
described herein. It represents the search of MS/MS
sequences on spectra sets 1 through the use of multiple search
engines M available in the market on hybrid target/decoy
databases 2. Scores x associated with the decoy results are
sorted by the state of the charge of the precursor ion and are
represented as probability densities y, in conformity to a GLD
model and calculating their p values V. P-values V obtained
are plotted against their relative frequency x'. It also includes
the GLD model used to represent the distribution of the meta-
scores x" as densities of probability y, performed during the
calculation of meta-score phase 3 described by the present
invention.

DETAILED DESCRIPTION OF THE INVENTION

The meta-search method claimed in the present invention
comprises the following steps:

1. MS/MS Search: The search in the MS/MS databases is
performed through the search engines used in the meta-search
process. The list of peaks of the spectra is used as input of the
system, determining the parameters of each search engine

10

15

20

25

30

35

40

45

50

55

60

65

6

according to a common scheme, fixing the precursor mass
tolerance and the fragment ion mass tolerance (ie, errors
tolerated in the calculated mass values), the specificity of
enzymatic digestion (ie, the type of fragmentation produced
by the enzyme used to digest proteins), or any other param-
eters depending on the engine used and the data set analyzed.

2. GLD Settings: a model based on generalized Lambda
distributions (GLD’s) is used to model score distributions of
spectrum-peptide matches. The generalized Lambda function
may be defined by its percentile distribution:

Y3 — (1 yr4 (9]

() = 0y, A5 425 A3 44) = A + %

where O<y=1. Parameters A, and A, are, respectively, the
location parameter (defined as the displacement of distribu-
tion in the x-axis) and scale parameter (which determines the
height of the distribution) and A, and A, determine, respec-
tively, the asymmetry of the distribution (with respect to a
vertical axis) and its kurtosis (defined as the degree of con-
centration around the peak). An adequate description of the
necessary restrictions on these parameters to provide valid
GLD’s can be found, for example, in Reference [7]. From the
percentile function, the probability density in x=Q(y) is
obtained as

— Az
Ay A=y

2
£ @

Since y is defined as the probability that x=Q(y), the mod-
eling of the GLD’s from the histograms of observed data
requires the conversion of data points at a frequency of rela-
tive scale, the calculation of the value of Q (y) for all points
and the clustering of data points according to said value. In
order to adjust the GLD’s to the data histograms, the percen-
tile method described in Reference [7] is used, in which four
statistic samples used as estimates of the parameters of the
distribution are calculated. Of all the sets of parameters (A,
A, As, ) compatible with the sets of estimates obtained for
each histogram, the GLD that best fits the data observed is
selected, like for example the one that minimizes the error
indicator referred to, as defined by the expression

®

K
Dlei- R
=1

where y, is the observed value in the i-nth box of the score
histogram (with K boxes) and {; is the value predicted by the
GLD model in consideration (probability density), in a simi-
lar way to a least squares adjustment.

3. Estimating p-values and error rates in the identification
of peptides: As there is no closed-form expression for the
probability function y=F (x), all p-values associated with
each data point is calculated numerically. Given a set of
p-values associated with the peptides and sorted in ascending
order, the expected proportion of data observations that
exceed a threshold p-value p; depends on the volume of data,
as well as the number i of points that have equal or greater
value-p. This amount, known as the false detection rate
(FDR), gives a measure of the expected error:
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FDR; =

Error rates can also be estimated by searching hybrid tar-
get/decoy sequence databases, counting the number of decoy
hits that exceed a certain threshold of value-p. This value,
calculated from the proportion of decoy identifications
observed among all identifications done for a given filter, is
called decoy hit rate (DHR) and is defined as

L)y
DHR; = -

where D, is the number of allocations to decoy peptide with
a p-value less than or equal to p,. Parameter o varies depend-
ing on the type of sequence database used. For hybrid target/
decoy databases with inverted sequence, a is equal to 2.

Other embodiments of the present invention may include
the use of other measures of error estimation, for example, the
probability provided by the “Familywise error rate” (FWER),
defined as

FWER~1-(1-p,)", ©)

where p, is the i” best p-value from N p-values obtained.

4. Calculating p-values and protein identification scores
and error rates: The peptide sequence allocations are grouped
within a precursor protein sequence. For p-values of a given
number h of ion candidates, assigned to a given protein, the
value of the protein score is defined as

" @)
Sp = ~loglpy),
i=1

i

where p, are the p-values of the candidate ions calculated in
the corresponding GLD models. Optionally, the value of the
protein score can also be defined as the sum of the peptide
meta-scores. In the same way, the values of FDR and DHR are
calculated as described in the previous section for each group
of similarity (this term defined as the set of proteins that share
at least one identified peptide), taking as a p-value the smaller
protein p-value within the group.

5. Integration of data from multiple search engines and
meta-score calculation: The strategy of integrating data from
multiple search engines is represented schematically in FIG.
1. The MS/MS spectra are assigned to peptide sequences
using multiple sequence search engines (meta-search). Cur-
rent examples of these engines are, for example, MASCOT
applications (available from Matrix Science Inc.), X! TAN-
DEM (distributed by The Global Proteome Machine Organi-
zation and Labkey) OMSSA (distributed by the National
Center for Biotechnology Information), Phenyx (distributed
by Geneva Bioinformatics) and InsPect (Distributed by the
Center for Computational Mass Spectrometry), among oth-
ers. After the allocation of sequences in the candidate pep-
tides, GLD’s are adjusted and all p-values are calculated with
their corresponding scores, as described in the previous para-
graphs. In a preferred embodiment of the present invention a
table containing the maximum score for each search engine
for each MS/MS spectrum in the dataset is constructed. With
this information, the meta-score of a spectrum j given a set of
data is defined as
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S; = argmax(GLD(1 — p, 0, 0.2142, 0.1488, 0.1488) + BA ), )
k

where the value of k that maximizes the value of the score
S, for a given spectrum is taken. The variable p ;. is the p-value
calculated by the GLD model for a given k search engine
associated with a candidate peptide. The distribution function
GLD(1-p4,0,0.2142,0.1488,0.1488) is the percentile func-
tion value (defined as the inverse function of the cumulative
distribution) of the GLD in the p; p-value, so as to obtain
approximately a normal distribution, provided p-values are
evenly distributed. A, defined as the matching parameter of
the search engine, indicates the number of other search
engines that have provided the same candidate peptide that
the k” engine, for the j* spectrum. Finally, f is a coefficient
whose value is to be optimized specifically for each data set,
selecting that value that maximizes the number of spectra
recovered for a given value of the DHR. The optimal value of
the matching coefficient can also be estimated using a differ-
ent numerical method, using a more complex formulation for
reclaiming the correlation between engines, rather than
assuming a linear dependence between the number of the
matching and the magnitude of the bonus.

In a second preferred embodiment of the invention a pro-
cedure is carried out by which, for a given spectrum j, instead
of' taking the best candidate for each engine, the I best candi-
dates are taken, sorted from highest to lowest score
(i=1, ..., ]). Subsequently we define an extended matching
parameter A, ;, which designates the number of other engines
(k=1,...,K) that provide as a better candidate (i=1) the same
peptide that the i”* candidate of the k” engine. In addition, a
number of accessory parameters X, . . . X,,, representing the
contribution of n additional sources of information, these
sources of information comprising one or more of the follow-
ing:

a) Sources of information related to the physiochemical
characteristics of the candidate peptide sequences:

Error ofthe value m/z of the precursor ion: absolute error in
measuring the mass/charge ratio of the precursor ion of the
fragmentation spectrum in consideration, in absolute value,
given a candidate peptide sequence. The calculation of the
expected value of the precursor ion mass/charge ratio is trivial
from the candidate peptide sequence and the estimated charge
of the precursor ion.

Retention time error: absolute error of the retention time of
fragmentation spectrum in consideration, in absolute value. It
is applied when the data have been obtained using reverse
phase chromatography (RPC) coupled with mass spectrom-
etry.

Error of the fragmentation retention time: absolute error of
retention time (at the stage of peptide pre-fragmentation) of
the fragmentation spectrum in consideration, in absolute
value. Itis applied when the data has been obtained by peptide
fragmentation through any suitable biochemical method (ion
exchange, reverse phase at basic pH, isoelectric focusing,
etc. ... ) prior to reverse phase chromatography coupled with
mass spectrometry. The observed value for each spectrum
may be the retention time at which each fraction was
obtained, if a measure of this value is available, or simply the
fraction number (which, in fact, is a transformation of order of
the previous value).

b) Sources of information related to the expected behaviour
of the chemical or enzyme that has generated the peptides
analyzed by mass spectrometry:

Number of internal targets: Number of cutting sites of the
enzyme or chemical agent containing the candidate peptide
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sequence. A binary variable for each value of number of
internal targets observed in the experiment is defined, whose
value is 1 if this number matches the number of targets inside
the candidate peptide sequence, and 0 otherwise.

Number of specific extremes: Number of extremes of the
candidate peptide sequence whose sequence is compatible
with the expected behaviour of the chemical agent or enzyme
that generated the peptides. A binary variable is defined for
each value of number of specific extremes observed in the
experiment, whose value is 1 if this number matches the
number of targets inside the candidate peptide sequence, and
0 otherwise.

¢) Sources of information related to the generation of mul-
tiple spectra from a single peptide:

Alternative forms-electric charge: Number of different
electric charges with which (provided by the engine as a
better candidate for a given spectrum) the candidate peptide
in the experiment has been provided. The disparity of electric
charges of a given peptide depends on the mechanism of
ionization.

Alternative forms-isotopic signatures: Number of configu-
rations of stable isotopic signatures with which (provided by
the engine as a better candidate for a given spectrum) the
candidate peptide sequence in the experiment has been
detected, when the data come from stable isotope labelling
experiments (stable isotope labelling, —SILE).

Alternative forms-chemical modifications: Number of
forms of chemical modification with which (provided by the
engine as a better candidate for a given spectrum) the candi-
date peptide sequence in the experiment has been detected,
when the peptides may undergo chemical change during the
process of analysis, whether such changes are induced by the
user or not.

Alternative forms-fragmentation mechanisms: Number of
fragmentation mechanisms of ions that have generated spec-
tra through which (provided by the engine as a better candi-
date for a given spectrum) the candidate peptide sequence in
the experiment has been detected, when the experiment com-
bines data obtained using different fragmentation mecha-
nisms (eg, collision-induced dissociation (CID) or electron
transfer dissociation (ETD)).

d) Sources of information related to specific engine char-
acteristics and performance depending on the type of data:

Precursor ion electric charge: a binary variable for each
value of electric charge observed in the experiment is defined,
whose value is 1 if the precursor ion electric charge is equal to
said electric charge, and 0 otherwise. It is used to promote or
penalize forms of electric charge for which the performance
of a given engine is particularly good or bad.

Fragmentation mechanism: a binary variable is defined for
each ion fragmentation mechanism used in the experiment,
whose value is 1 if the spectrum in consideration has been
obtained by said fragmentation mechanism, and 0 otherwise.
It is used to promote or penalize fragmentation mechanisms
for which the performance of a given engine is especially
good or bad.

Delta score and additional scores: a generic delta score is
defined for all engines as the score given by the engine to a
candidate peptide sequence minus the highest score observed
among the remaining candidates for the same spectrum with
a lower score. This score is similar to additional differential
scores usually called ‘delta’, which provide some engines
such as SEQUEST. Additional score is defined as any amount
that is capable of being used as scoring, and which is provided
by the engine along with the main score, although it is usually
much less informative than this. For example, medianPRM-
score, totalPRMscore, fractionY and fractionB variables,

10

15

20

25

30

35

40

45

50

55

60

65

10

provided by the engine Inspect can be defined as such vari-
ables, along with its main scoring, called MQscore.

e) Sources of information related to the precursor protein
of the candidate peptides:

Precursor protein (complete experiment): Establishes a
relationship between the number of peptides with which the
precursor protein has been identified (from all spectrum of the
experiment) of a given candidate peptide sequence and the
length of the sequence of said protein. For this purpose pro-
teins are first sorted from highest to lowest number of pep-
tides identified, and secondly by decreasing protein length
and then the relative ranking is used in both cases to generate,
through a standardized normal inverse function, variables that
follow a standard normal distribution. The difference
between these two variables is taken as the protein score.

Precursor protein (fraction experiment): Same as above,
but the number of peptides of the same protein among the
spectra of a certain fraction of the experiment are counted,
and not of the entire experiment. It can be used when a
fractioning of proteins has been made, using any appropriate
biochemical technique, prior to the generation of peptides to
be analyzed by mass spectrometry.

Precursor protein (grouping): the number k, of different
fractions in the experiment is counted, in which peptides of
the precursor protein of the candidate peptide sequence in
question appear. A large number K of random samples (eg.
K=1000) of peptides identified in the experiment of size N,
where N is the number of peptides identified from the precur-
sor protein, are taken and the number k. of fractions different
than those from the peptides of the sample are counted. The
number of random samples R in which k, takes a value greater
than k,, is counted and the source of information for the
grouping of the precursor protein is defined as R/K. It can be
used when a fractioning of proteins has been made, using any
appropriate biochemical technique, prior to the generation of
the peptides to be analyzed by mass spectrometry.

Itis possible, in addition, to use numerical transformations
of additional sources of information mentioned before,
whether they are transformations of order, non-linear trans-
formations, arbitrary categories based on ranges of values,
probabilities or probability densities calculated from these
additional sources of information, replacing these or in com-
bination with these, using these transformations also as addi-
tional sources of information.

After determining what sources of information are used,
the extended score of the i” candidate provided for the i”
spectrum for the k” engine is defined as

5= GLD(1-p;1,0,0.2142,0.1488)+B x50+
BX etV A o)

©

where p,; is calculated as described above for all candi-
dates of each engine from the score provided by the engine,
the coefficients 3, . . . p,, and y are optimized by any math-
ematical optimization method in several dimensions, for
example by maximizing the number of spectra or peptides
recovered by setting a threshold of DHR. In each iteration of
the optimization method the I best candidates for K engines
are reordered from largest to smallest value of's,; and index i
are reassigned in order to recalculate the values A, ;. Finally,
we define the meta-score of the i spectrum as:

S = argmax(s;y ) (10)
ik
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where i, j and k are integers, taking the i” candidate of the
k” engine, as the candidate peptide for the i” spectrum, such
that the values of i and k maximize the value of S,.

In a third preferred embodiment of the invention, the
matching parameter is defined in its weighted form as fol-
lows:

A = Z Wil Qijid >

k (1D
=Lk

where a is the matrix of binary variables of size KxK that
indicates which of the K engines provide the same peptide
candidate that the k™ engine, and w is a matrix with weight
coefficients of matches among engines. It should be noted
that setting to 1 all the values of the matrix w the meta-score
equation 9 is obtained, and setting i=1 the meta-score equa-
tion 8 is also obtained. The value of these coefficients could be
calculated, for example, from the matching frequencies
among engines observed in the decoy peptides, or assuming
the same initial value for all of them (eg. 1/(K(K-1))) and
then optimizing these values as described for equation 9.

In a fourth preferred embodiment of the invention, a dif-
ferent weight coefficient is assigned to each engine during the
meta-scoring, and this is set a priori or calculated, so that it is
possible to incorporate the possibility of favouring the results
obtained by some engines over others, if the particularities of
the analyzed experiment would require it. The value of these
coefficients could be calculated similarly to those described
above.

In a fifth preferred embodiment of the invention, after
generating meta-scores from each engine, an order of inte-
gration of additional sources of information is established, so
that, for a given engine, a single additional source of infor-
mation is incorporated to the meta-score, ignoring the match-
ing information with other engines in equation 9, and its
coefficient [ is optimized using a numerical optimization
method in only one dimension. After obtaining a new meta-
scoring through this process, a new source of information is
taken. This process is repeated until all the additional sources
of information have been incorporated into the meta-score.
The advantage of this process of meta-scoring incorporating
additional sources of information in stages is that it has the
necessary theoretical properties to eliminate any correlation
among additional sources of information. After updating the
meta-scoring of all engines, the matching information is
incorporated, using the methods described in equations 8 or 9,
and then the method described in Equation 10.

In a sixth preferred embodiment of the invention, an order
of integration of the various search engines is established, so
the process begins with two engines (preferably those two
that provide the highest sensitivity, for example defined as the
number of identifications a given error rate) and the equations
8 or 9 and equation 10 are applied. The result of this process
is like a new engine ‘consensus’, then this result is taken
together with the third engine and the equations 8 or 9 and
equation 10 are applied. The process is repeated until all the
engines have been incorporated into the ‘consensus’ prefer-
ably in descending order of their sensitivity. The advantage of
this process of meta-scoring in stages is that it has the neces-
sary theoretical properties to eliminate any correlation among
engines.

After the candidate peptide sequences have been allocated
to all MS/MS spectra, redundancy is eliminated, maintaining,
for each combination of peptide sequence, electrical charge
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and chemical structure pattern, the one that has the highest
meta-score. Subsequently, we obtain a unique distribution of
meta-score for each data set, as the meta-scores are indepen-
dent from the precursor ion state of charge. From the p-values
obtained as described in the above points, both the error rates
FDR and DHR (at both levels, peptide and protein) as well as
the p-values for proteins can be calculated.

Among the advantages of the meta-search method
described by the present invention over other methods of
known sequence searching, the following are included:

The method can be completely generalized to be applied to
any number of search engines.

It uses a standard method to obtain statistical distribution
functions, applicable to the results of any search engine.

It uses a robust statistical modeling that allows the selec-
tion of a unique combination of peptide sequence, electric
charge and chemical composition pattern by spectrum.

The meta-search method and its meta-scoring system adds
additional information that can not be obtained by searching
with only one engine.

Itintegrates, in its formulation, the use of matching param-
eters, defined as the number of other search engines that have
supplied the same peptide candidate than a given engine.

As for protein detection, it uses a rigorous statistical
method, unbiased, which uses a FDR filtering.

Additionally, the claimed method allows incorporating
other additional sources of information to the matching of the
engine, such as the mass error of the precursor peptide, the
error in the retention time, the specificity of enzymatic diges-
tion or the matching with novo sequencing of the information.
This flexibility allows the meta-search method the integration
of data using different sample preparation, protein digestion
methods and mechanisms of ion fragmentation.

By way of example, the results of tests conducted by the
method claimed by the present invention are included here
(see Table 1a-1f) and Table 2a-2d)), for samples of publicly
available RaftFlow data (available on the internet repository
SourceForge), PAe000038-39 (available on the website Pep-
tideAtlas) PAe000114 (also in PeptideAtlas) iPRG2008 (the
Association of Biomolecular Resource Facilities Proteome
Informatics Research Group), evaluated for two sets of dif-
ferent search parameters (and distinguished by the names
iPRG2008 and iPRG2008-NE). A detailed description of
these data sets and related experiments can be found in Ref-
erence [6]. Also, the results at the peptide level of the follow-
ing experiments carried out in the Proteomics Laboratory of
the National Center of Biotechnology, National Research
Council are included: Experiment SKHep-LA-I is based on
the enrichment of peptides that are natural ligands of the
molecules of the major histocompatibility complex type I
(MHC-I). In this experiment the peptides are purified from
cell line Sk-Hep, which express class [ alleles HLA-A*0201,
HLA-A*2402, HLA-B*3502 and HL.A-B*4403. These pep-
tides are generated by a natural process of digestion within the
cell, bound to MHC molecules and transported to the cell
surface, where they are presented to immune system cells.
The different alleles of the genes that encode the MHC pro-
teins may have a different repertoire of peptide ligands with
slightly different structural properties. Itis believed that some
of these alleles are associated with autoimmune diseases, so
having automated tools for large-scale characterization of
repertoire of MHC molecules (either type I or II) is of con-
siderable biomedical interest. The CID HLA-ETD experi-
ment is a replica of the previous experiment, unlike spectra
MS/MS were obtained using two different fragmentation
mechanisms known by its initials in English as a CID (colli-
sion-induced dissociation) and ETD (electron transfer disso-
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ciation). The phosphopeptides experiment ABRF2010 corre-
sponds to the analysis, also generating both CID and ETD
spectra of phosphopeptides enriched by chromatography
IMAC (Immobilized metal affinity chromatography), from a
human protein sample provided by the Association of Bio-
molecular Research Facilities (ABRF). Phosphorylation is a
post-translational modification of great importance in intra-
cellular signaling processes, so that the results of identifica-
tion of phosphopeptides by mass spectrometry shown here
are of greatimportance in the field of biomedical research and
both basic and applied biotechnology. The £ coli SILE-SI-
LAC experiment corresponds to the analysis of a sample from
two populations of Escherichia coli bacteria labelled in cul-
ture with different isotopic forms of the aminoacid lysine
(native or heavy form 13Cx6, 15Nx2, +8 Da) using the tech-
nique SILAC (Stable Isotopic Labelling by Amino acids in
Cell Culture), whose protein extracts were fractionated by
electrophoresis in polyacrylamide gel before digestion with
trypsin. The experiment “Serum Frac. RP-basic pH” corre-
sponds to the analysis of a sample of human serum which,
after digestion with trypsin of the protein extract, obtained
peptides were fractionated by reversed phase chromatogra-
phy at basic pH (about 10.9).

The processing of data from different experiments has been
performed using all four search engines InsPect, MASCOT,
X! TANDEM (the latter used in two scoring versions, classi-
cal and “k-score”) and OMSSA. The results obtained by the
meta-search method claimed by this invention are summa-
rized in Tables 1 and 2. For most data sets used, the combined
meta-scoring system of all the search engines, using the
p-values obtained by GLD modeling, provides a substantial
increase in the number of peptides identified, compared with
individual results obtained in any other engines in consider-
ation. In the case of PAe000114 experiment, as it is clearly
dominated by InsPect engine results, the results of the meta-
search excluding said engine, are also included for compari-
son. The combination of the other engines, including match-
ing information, provided a 19% higher efficiency than that
obtained by OMSSA individually, and even greater efficiency
in the rest of the engines. In general, the use of matching
information improves the sensibility of all experiments,
increasing between 9% to 26% the number of correctly iden-
tified peptides (with a FDR=<0.05 on a non-redundant set).
Regarding the detection of proteins, the number of identifi-
cations with said error threshold increases between 6% and
60% after being sorted by meta-score. Table 2 (a-d) shows the
results of the meta score process incorporating none, one or
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several sources of additional information in stages, as well as
using data from a single engine or multiple engines in stages
and using matching information. As it can be seen, all addi-
tional sources of information described help to increase the
efficiency of the process of meta-scoring, judging by the
significant increase in the number of allocations spectrum-
sequence recovered to a certain error rate value, especially
when using several of these additional sources of information
in combination. Note that some of these additional sources of
information are based on peculiarities related to experimental
design that no search engine is able to incorporate into their
scoring system, as deviations from the expected values of
retention time, retention time during peptides fragmentation
prior to analysis by mass spectrometry (Serum frac. experi-
ment. basic pH), previous protein pre-fragmentation (SILE-
SILAC experiment), alternative forms of charge, isotopic
signatures (SILE-SILAC experiment) or mechanisms of frag-
mentation (CID experiments HLA-ETD and ABRF2010
phosphopeptides.), etc. Furthermore, the method described
allows to optimally use and continue extracting information
from these sources even in cases where the engine already
uses these sources in its scoring system, as in MASCOT,
which internally uses the error in the m/z value of the precur-
sor ion to calculate their scores (see data for the experiment
Serum frac. basic pH) as well as easily incorporate delta
scores and supplementary scores provided by the engine in
addition to the main score (see experiment ABRF2010 phos-
phopeptides, engine Inspect data and Serum frac experiment.
pHbasic, MASCOT engine data). Under these conditions, the
effectiveness of the process is even greater when using infor-
mation from multiple engines instead of a single engine, as
clearly seen in experiments HLA-ETD and CID ABRF2010
phosphopeptides.

Tables of Results

Table 1 (below): Comparison between modeling results
using a single engine for different experiments and the results
using the meta search method. The indices used are: I,
InsPect, K, X-TANDEM with “k-score”; M, MASCOT, OR,
OMSSA, T, X! TANDEM classic. Comma-separated lists
correspond to the use of multiple engines. “Concord.” Indi-
cates if the matching information has been taken into account.
“No. Pept.” Indicates the number of non-redundant peptide
matches obtained for the FDR filter (or DHR, if any) given.
“No. Prot” indicates the number of protein aggregation
groups obtained for the FDR filter (or DHR, if any) given.
“N/a” indicates “not applicable.”

TABLE 1
No. Pept. No. Pept. No. Prot No. Prot
Engine (%) Concord. (FDR=0.05) DHR (DHR=0.05) (FDR=0.05) ProtDHR (DHR= 0.05)
a. RaftFlow Experiment
I n/a 1751 0.037 1851 410 0.062 360
K n/a 1897 0.038 1986 455 0.048 456
M n/a 1565 0.06 1511 411 0.044 422
(¢] n/a 1720 0.029 1825 447 0.072 430
T n/a 1545 0.044 1579 426 0.069 412
LK.M O,T no 2489 0.042 2552 527 0.059 515
LK, MO, T vyes 2708 0.049 2714 567 0.062 555
b. PAe000038-39 Experiment
I n/a 522 0.042 572 150 0.053 108
K n/a 455 0.105 58 91 0.042 96
M n/a 521 0.054 505 130 0.046 145
(¢] n/a 616 0.058 579 182 0.062 154
T n/a 409 0.058 394 149 0.067 147
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TABLE 1-continued
No. Pept. No. Pept. No. Prot No. Prot

Engine (%) Concord. (FDR = 0.05) DHR (DHR=0.05) (FDR=<0.05) ProtDHR (DHR =<0.05)
LK,M,O0,T no 807 0.138 443 151 0.066 147
LK,M,O, T yes 993 0.13 801 239 0.05 239

c. PAe000114 Experiment
I na 5997 0.031 6503 1274 0.072 1193
K na 2829 0.066 2586 915 0.066 858
M na 4277 0.043 4381 1251 0.059 1211
(@) na 4713 0.048 4752 1122 0.072 1015
T na 3217 0.028 3513 1179 0.067 1125
LK,M,O0,T no 5987 0.0281 6674 1356 0.05 1347
LK,M,O, T yes 6711 0.0355 7261 1326 0.04 1426
K,M,O,T no 4765 0.0293 5223 1258 0.06 1197
K,M,O,T yes 5685 0.0384 5973 1334 0.067 1290

d. iPRG2008 Experiment
I na 148 0.056 145 43 0.045 50
K na 673 0.029 708 255 0.047 258
M na 555 0.053 547 191 0.032 197
(@) na 497 0.023 576 182 0.046 182
T na 408 0.054 402 164 0.048 168
LK,M,O0,T no 725 0.0438 727 228 0.064 221
LK,M,O, T yes 878 0.0367 913 316 0.059 308
KM, T no 712 0.0501 708 235 0.044 235
KM, T yes 892 0.0647 877 298 0.069 289

e. iPRG2008-NE Experiment
K na 241 0.027 216 154 0.052 152
M na 357 0.074 387 106 0.019 122
T na 85 0.044 91 49 0.041 50
KM, T no 341 0.0629 335 149 0.04 153
KM, T yes 805 0.0961 708 239 0.025 249
f. SKHep-HLA-I Experiment

K na 36 0.049 41 n/a na n/a
M na 25 0.2 3 n/a na n/a
(@) na 6 0.2 5 n/a na n/a
T na 14 0.12 9 n/a na n/a
K,M,0,T 10 56 0.14 3 n/a n/a n/a
K,M,0,T yes 180 0.034 180 n/a n/a n/a

Table 2 (below): Comparison between modeling results
using a single engine or a combination of several engines in
stages (using matching information), based on data generated
by a unique fragmentation mechanism or through multiple
mechanisms, incorporating in stages one, none or several
additional sources of information to the process of meta-
scoring. The indices used are the same as in Table 1, to which

P (PHENYX) is added. Process performance is reported as

40 the number of spectrum-sequence allocations recovered in

overcoming a particular error rate measured as DHR (0.01,
0.05and 0.1). For additional information sources, ‘ALL’ indi-
cates that all sources of information described that were avail-
able on that data were incorporated; ‘NONE’ indicates that no
additional sources of information were used.

TABLE 2

No. retrieved spectra

Engine (%) frag. mech.  Additional Information sources DHR <= 0.01 DHR <= 0.05 DHR <= 0.1
a. Serum frac. RP pH basic Experiment
M CID NONE 393 524 619
M CID error m/z precursor 444 569 671
M CID error retention time 418 548 657
M CID error retention time fractioning 453 576 656
M CID forms alt. -electric charge 424 638 744
M CID Internal targets 420 552 647
M CID Delta punctuation 401 525 622
M CID Precursor protein -experiment 660 798 915
M CID ALL 832 948 1028
b. Ecoli SILE-SILAC Experiment
M CID NONE 5687 7424 8302
M CID alt. forms - isotopic signatures 6458 7724 8618
M CID Precursor protein -experiment 6458 8122 9125
M CID precursor protein fraction 6084 7539 8661
M CID ALL 7750 8911 9637
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TABLE 2-continued

18

No. retrieved spectra

Engine (%) frag. mech.  Additional Information sources DHR <=0.01 DHR <= 0.05 DHR <= 0.1
¢. HLA CID-ETD Experiment
M CID, ETD NONE 4 4 4
M CID, ETD alt. forms - fragmentation mechanisms 169 195 229
K CID, ETD NONE 1 1 1
K CID, ETD alt. forms - fragmentation mechanisms 128 215 232
T CID, ETD NONE 3 3 3
T CID, ETD alt. forms - fragmentation mechanisms 43 64 76
M, K CID, ETD alt. forms - fragmentation mechanisms 211 322 397
MK, T CID, ETD alt. forms - fragmentation mechanisms 256 336 421
d. Fosfopeptides ABRF2010 Experiment
I CID NONE 3 3 3
I CID internal targets 4 4 4
I CID alt. forms - electric charge 6 6 6
I CID M/Z precursor error 9 9 9
I CID specific extremes 11 11 11
I CID supplementary scores 18 18 18
I CID Precursor protein -experiment 15 15 15
I CID ALL 20 20 21
K CID, ETD NONE 8 8 8
K CID, ETD alt. forms - fragmentation mechanisms 26 26 30
O CID, ETD NONE 2 2 2
(@) CID, ETD alt. forms - fragmentation mechanisms 21 21 25
M CID, ETD NONE 13 13 13
M CID, ETD alt. forms - fragmentation mechanisms 26 26 28
T CID, ETD NONE 10 10 10
T CID, ETD alt. forms - fragmentation mechanisms 15 15 15
P CID, ETD NONE 13 13 13
P CID, ETD alt. forms - fragmentation mechanisms 26 26 29
M, P CID, ETD alt. forms - fragmentation mechanisms 35 35 36
M, K CID, ETD alt. forms - fragmentation mechanisms 31 31 34
M, O CID, ETD alt. forms - fragmentation mechanisms 27 27 36
M, T CID, ETD alt. forms - fragmentation mechanisms 22 23 23
KT CID, ETD alt. forms - fragmentation mechanisms 25 25 31
O, T CID, ETD alt. forms - fragmentation mecnanisms 20 20 22
O, P CID, ETD alt. forms - fragmentation mechanisms 26 26 34
K, P CID, ETD alt. forms - fragmentation mechanisms 32 32 42
K, O CID, ETD alt. forms - fragmentation mechanisms 29 29 32
P T CID, ETD alt. forms - fragmentation mechanisms 27 27 30
M, I CID, ETD alt. forms - fragmentation mechanisms 20 20 25
K, I CID, ETD alt. forms - fragmentation mechanisms 18 18 20
0,1 CID, ETD alt. forms - fragmentation mechanisms 24 24 33
P I CID, ETD alt. forms - fragmentation mechanisms 16 16 22
T, I CID, ETD alt. forms - fragmentation mechanisms 16 16 16
O, T,1 CID, ETD alt. forms - fragmentation mechanisms 20 24 24
M,P, O CID, ETD alt. forms - fragmentation mechanisms 35 35 36
M,PI CID, ETD alt. forms - fragmentation mechanisms 21 21 25
45
What is claimed is: (b) for the group of all search engines used, wherein the
1. A method for identifying peptides and proteins from meta-score (S) for a spectrum j is built using the equa-
mass spectrometry data and sequence database searching, tion:
using at least two different search engines, in which models of
distribution of spectrum-peptide allocation scores for peptide 50
candidates allocated by each of said search engines are S; = argmax (GLD(1 — p, 0, 0.2142, 0.1488, 0.1488) + BA ;),
obtained and a probability value or an error rate from these ,
models is assigned to each spectrum-peptide allocation score,
comprismg: . o where p,, is the p-value calculated by the GLD model for a
(a) modelling through generalized Lambda distribution 5 given k search engine associated with a candidate peptide, 8
%GLD) ﬁ(’linCtIOI(lis,éhe specltrulm-lziegtlde allllocatlzn scores is a coefficient whose value is optimized for the mass spec-
ordpepltl le can lh ates cba ‘Eul ate ly eac n search engine, trometry data, A, is the matching parameter that indicates the
a.I(ll C?l cu a.“nf% the probability values of spectrum-pep- number of other search engines that have provided the same
tide allocation, . . candidate peptide as the kth engine for the jth spectrum and
(b) calculating the degree of overlap of peptide candidate
results between the search engines used, using matching 60
parameters of peptide sequence identifications, wherein
those matching parameters are defined as the number of argmax
search engines that provide the same candidate peptide
provided by other search engines; ) ) o
(c) building spectrum-peptide allocation meta-scores (S) 65 1s the value of the search engine k that maximizes the sum of

from spectrum-peptide allocation probability values cal-
culated in step (a) and matching parameters used in step

1.) the percentile function value of the GLD in the p-value p ,
(GLD(1-py4, 0,0.2142, 0.1488, 0.1488)) and 2.) B A;; and
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(d) modelling meta-scores (S) built in step (c) using gen-
eralized Lambda distribution (GLD) functions, obtain-
ing probability values of spectrum-peptide allocation,
error rates or any other measures by which to obtain a
statistical classification of peptide sequence allocation,
for the group of all search engines used.
2. The method of claim 1, characterized in that step (d) is
optional if the sequence databases used are hybrid target or
decoy databases.
3. The method of claim 1, characterized in that the error
rate used is given by a false discovery rate (FDR).
4. The method of claim 1, characterized in that the error
rate used is determined by a decoy hit rate (DHR), by a
probability of obtaining at least one false positive (FWER) or
by any other statistical quantities that give a measure of pre-
cision error in the allocations obtained.
5. The method of claim 1, characterized in that a different
weight coefficient is assigned to each search engine during
the meta-scoring phase, being this set a priori or calculated on
the basis of any characteristic of the search engine or the
sequence databases used, for which the results of some search
engines over others can be favoured.
6. The method of claim 1, characterized in that a relation-
ship is established between the meta-score calculated for a
spectrum-peptide allocation and the characteristics of the
sequence of the peptide candidate, such as length, presence or
absence of subsequences or structural motifs as well as the
matching of the sequence of the peptide with what is expected
from the cutting mechanism of the chemical agent used in the
digestion of proteins.
7. The method of claim 1, characterized in that a relation-
ship is established between the meta-score calculated for a
peptide spectrum allocation and other measurable variables,
such as the error observed in measuring the mass of the
precursor, ion mobility, the prediction of retention time dur-
ing chromatographic separation, the prediction of the isoelec-
tric point in a possible separation by isoelectric focusing, or
similar measures obtained from variants of these techniques,
or transformation of said measures.
8. The method of claim 7, characterized in that for each
spectrum, the best scores from each of the search engines are
obtained, said scores are subjected to meta-scoring, using at
least one additional sources of information selected from the
group consisting of:
related to the physicochemical characteristics of the can-
didate peptide sequences, such as the error of the mass/
charge ratio value (m/z) in the precursor ion, the time
retention error or the fragmentation retention time error;

related to the expected behaviour of the chemical agent or
enzyme that has generated the peptides analyzed by
mass spectrometry, such as the number of internal tar-
gets or the number of specific extremes;

related to the generation of multiple spectra from the same

peptide, such as alternative forms of electric charge, the
isotopic signatures, chemical modifications or fragmen-
tation mechanisms;

related to specific search engine characteristics and their

performance depending on the type of data, such as the
electric charge of the precursor ion, the fragmentation
mechanism, delta scores or additional scores;

related to the precursor protein of the candidate peptides,

such as the precursor protein in a complete experiment,
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the precursor protein in a fraction of an experiment or the
precursor protein by clustering; and

each search engine meta-scores are rearranged, taking the

best meta-score of each search engine to complete the
meta-scoring phase.

9. The method of claim 8, characterized in that numerical
transformations of the additional sources of information are
used, whether they be transformations of order, or nonlinear
transformations of probability densities calculated from these
additional sources of information, either by replacing them or
in combination with them, using these transformations as
sources of additional information.

10. The method of claim 1, characterized in that extended
matching parameters, defined as the number of other search
engines that provide, as best candidate, the same peptide that
one of the given candidates provided by a search engine, are
used.

11. The method of claim 1, characterized in that the match-
ing parameter is defined in its weighted form using weight
coefficients.

12. The method of claim 1, characterized in that different
searches conducted on the same collection of spectra using
different combinations of configurable parameters of the
same search engine are treated as searches conducted by
different search engines.

13. The method of claim 1, wherein the method establishes
a relationship between the meta-score calculated for a spec-
trum-peptide allocation and structural information of a tan-
dem mass spectrometry (MS/MS) spectrum obtained by de
novo interpretation.

14. The method of claim 8, characterized in that additional
sources of information for each search engine are integrated
in stages in the process of meta-scoring, generating meta-
scores from each search engine and establishing an order of
integration of said additional sources of information, so that
for a given search engine a single additional source of infor-
mation to the meta-score is incorporated, ignoring the match-
ing information with other search engines, and a new meta-
scoring is obtained, repeating this process until that all
additional sources of information have been incorporated into
the meta-score and later adding the matching information.

15. The method of claim 1, wherein the search engines are
integrated in stages in the process of meta-scoring, establish-
ing an order of integration of the various search engines,
starting with the integration of two search engines, and treat-
ing the meta-score in this process as a new consensus engine,
later taking this result and integrating it with a third search
engine, repeating the process successively until all the search
engines used in the process have been incorporated into the
“consensus”.

16. A non-transitory computer-readable medium config-
ured to store logic executable by a device for analysis of
results of tandem mass spectrometry, said device configured
for the identification of peptides and proteins, wherein the
device implements the method of claim 1.

17. The method of claim 15, characterized in that a differ-
ent weight coefficient is assigned to each search engine dur-
ing the meta-scoring phase, being this set a priori or calcu-
lated on the basis of any characteristic of the search engine or
the sequence databases used, for which the results of some
search engines over others can be favoured.

#* #* #* #* #*



